Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Molecules ; 29(3)2024 Feb 04.
Article En | MEDLINE | ID: mdl-38338469

The elevated occurrence of non-melanoma skin cancer (NMSC) and the adverse effects associated with available treatments adversely impact the quality of life in multiple dimensions. In connection with this, there is a necessity for alternative approaches characterized by increased tolerance and lower side effects. Natural compounds could be employed due to their safety profile and effectiveness for inflammatory and neoplastic skin diseases. These anti-cancer drugs are often derived from natural sources such as marine, zoonotic, and botanical origins. Natural compounds should exhibit anti-carcinogenic actions through various pathways, influencing apoptosis potentiation, cell proliferation inhibition, and metastasis suppression. This review provides an overview of natural compounds used in cancer chemotherapies, chemoprevention, and promotion of skin regeneration, including polyphenolic compounds, flavonoids, vitamins, alkaloids, terpenoids, isothiocyanates, cannabinoids, carotenoids, and ceramides.


Antineoplastic Agents , Skin Neoplasms , Humans , Quality of Life , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Chemoprevention , Carotenoids/pharmacology , Skin Neoplasms/drug therapy , Skin Neoplasms/prevention & control , Skin Neoplasms/pathology
2.
Geroscience ; 46(1): 87-97, 2024 Feb.
Article En | MEDLINE | ID: mdl-37733222

Two multidimensional problems of recent times - Alzheimer's disease and light pollution - seem to be more interrelated than previously expected. A series of studies in years explore the pathogenesis and the course of Alzheimer's disease, yet the mechanisms underlying this pathology remain not fully discovered and understood. Artificial lights which accompany civilization on a daily basis appear to have more detrimental effects on both environment and human health than previously anticipated. Circadian rhythm is affected by inappropriate lighting conditions in particular. The consequences are dysregulation of the sleep-wake cycle, gene expression, neuronal restructuring, brain's electricity, blood flow, metabolites' turnover, and gut microbiota as well. All these phenomena may contribute to neurodegeneration and consequently Alzheimer's disease. There is an increasing number of research underlining the complexity of the correlation between light pollution and Alzheimer's disease; however, additional studies to enhance the key tenets are required for a better understanding of this relationship.


Alzheimer Disease , Humans , Alzheimer Disease/etiology , Light Pollution , Circadian Rhythm/physiology
3.
J Cell Biochem ; 124(6): 765-784, 2023 06.
Article En | MEDLINE | ID: mdl-37269535

Regulated cell death is an essential and heterogeneous process occurring in the life cycle of organisms, from embryonic development and aging to the regulation of homeostasis and organ maintenance. Under this term, we can distinguish many distinct pathways, including apoptosis and pyroptosis. Recently, there has been an increasing comprehension of the mechanisms governing these phenomena and their characteristic features. The coexistence of different types of cell death and the differences and similarities between them has been the subject of many studies. This review aims to present the latest literature in the field of pyroptosis and apoptosis and compare their molecular pathway's elements and significance in the physiology and pathophysiology of the organism.


Apoptosis , Pyroptosis , Apoptosis/physiology , Cell Death
4.
Membranes (Basel) ; 13(2)2023 Jan 29.
Article En | MEDLINE | ID: mdl-36837670

Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the presence of mechanosensitive ion channels (MIChs) such as the Piezo and TRP families. They are essential in many physiological processes in the human body. However, their role in pathology has also been observed. Recent discoveries have highlighted the relationship between these channels and the development of malignant tumors. Multiple studies have shown that MIChs mediate the proliferation, migration, and invasion of various cancer cells via various mechanisms. This could show MIChs as new potential biomarkers in cancer detection and prognosis and interesting therapeutic targets in modern oncology. Our paper is a review of the latest literature on the role of the Piezo1 and TRP families in the molecular mechanisms of carcinogenesis in different types of cancer.

5.
J Clin Med ; 11(17)2022 Aug 24.
Article En | MEDLINE | ID: mdl-36078902

Nowadays, molecular and immunological research is essential for the better understanding of tumor cells pathophysiology. The increasing number of neoplasms has been taken under 'the molecular magnifying glass' and, therefore, it is possible to discover complex relationships between the cytophysiology and immune system action. An example could be renal cell carcinoma (RCC) which has deep interactions with immune mediators such as Interleukin 17 (IL-17)-an inflammatory cytokine reacting to tissue damage and external pathogens. RCC is one of the most fatal urological cancers because of its often late diagnosis and poor susceptibility to therapies. IL-17 and its relationship with tumors is extremely complex and constitutes a recent topic for numerous studies. What is worth highlighting is IL-17's dual character in cancer development-it could be pro- as well as anti-tumorigenic. The aim of this review is to summarize the newest data considering multiple connections between IL-17 and RCC.

6.
J Enzyme Inhib Med Chem ; 37(1): 1012-1022, 2022 Dec.
Article En | MEDLINE | ID: mdl-35361039

In this work, we designed, synthesised and biologically investigated a novel series of 14 N- and O-phosphorylated tacrine derivatives as potential anti-Alzheimer's disease agents. In the reaction of 9-chlorotacrine and corresponding diamines/aminoalkylalcohol we obtained diamino and aminoalkylhydroxy tacrine derivatives. Next, the compounds were acid to give final products 6-13 and 16-21 that were characterised by 1H, 13 C, 31 P NMR and MS. The results of the docking studies revealed that the designed phosphorus hybrids, in theory can bind to AChE and BChE. All compounds exhibited significantly lower AutoDock Vina scores compared to tacrine. The inhibitory potency evaluation was performed using the Ellman's method. The most inhibitory activity against AChE exhibited compound 8 with an IC50 value of 6.11 nM and against BChE 13 with an IC50 value of 1.97 nM and they were 6- and 12-fold potent than tacrine. Compound 19 showed the lack of hepatocytotoxicity in MTT assay.


Alzheimer Disease , Tacrine , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cholinesterase Inhibitors/chemistry , Humans , Structure-Activity Relationship , Tacrine/chemistry
7.
Curr Med Chem ; 28(4): 673-686, 2021.
Article En | MEDLINE | ID: mdl-32129162

Despite significant research progress on the pathogenesis, molecular biology, diagnosis, treatment, and prevention of cancer, its morbidity and mortality are still high around the world. The emerging resistance of cancer cells to anticancer drugs remains still a significant problem in oncology today. Furthermore, an important challenge is the inability of anticancer drugs to selectively target tumor cells thus sparing healthy cells. One of the new potential options for efficient and safe therapy can be provided by opioid growth factor (OGF), chemically termed Met-enkephalin. It is an endogenous pentapeptide (Tyr-Gly-Gly-Phe-Met) with antitumor, analgesic, and immune-boosting properties. Clinical trials have demonstrated that OGF therapy alone, as well as in combination with standard chemotherapies, is a safe, non-toxic anticancer agent that reduces tumor size. In this paper, we review the structure-activity relationship of OGF and its analogues. We highlight also OGF derivatives with analgesic, immunomodulatory activity and the ability to penetrate the blood-brain barrier and may be used as safe agents enhancing chemotherapy efficacy and improving quality of life in cancer patients. The reviewed papers indicate that Met-enkephalin and its analogues are interesting candidates for the development of novel, non-toxic, and endowed with an analgesic activity anticancer drugs. More preclinical and clinical studies are needed to explore these opportunities.


Analgesics, Opioid , Antineoplastic Agents , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics, Opioid/pharmacology , Antineoplastic Agents/pharmacology , Enkephalin, Methionine , Humans , Intercellular Signaling Peptides and Proteins , Quality of Life
8.
Anticancer Agents Med Chem ; 21(1): 71-83, 2021.
Article En | MEDLINE | ID: mdl-32579508

BACKGROUND: At the present time, there is a growing interest in metal-based anticancer agents. Metal complexes exhibit many valuable clinical properties, however, due to toxicity, only a few clinically useful complexes have been discovered. It has been demonstrated that synthetic vanadium complexes exhibit many biological activities, including anti-cancer properties, however, cellular and molecular mechanisms still are not fully understood. OBJECTIVE: This investigation examined the potential effects of three newly synthesized oxidovanadium(IV) complexes with 2-amino-3-hydroxypyridine against pancreatic cancer cells. METHODS: We measured cytotoxicity by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, antiproliferative activity by bromodeoxyuridine assay and necrosis as well as late apoptosis by lactate dehydrogenase assay. Reactive oxygen species generation, apoptosis and mitochondrial membrane potential were determined by a flow cytometry technique. Cell morphology was evaluated by using a transmission electron microscope. RESULTS: The results showed that oxidovanadium(IV) complexes were cytotoxic on pancreatic cancer cells (PANC-1 and MIA PaCa2) over the concentration range of 12.5-200µM, following 48h incubation. Additionally, the cellular mechanism of cytotoxic activity of [2-NH2-3-OH(py)H]4[V2O2(pmida)2]·6H2O (V3) complex was dependent on ROS generation, induction apoptosis with simultaneous disruption of mitochondrial membrane potential. CONCLUSION: We have proven that oxidovanadium (IV) complexes show therapeutic potential in pancreatic cancer therapy. The results of our research will help to understand the cellular mechanisms of the cytotoxic activity of the vanadium complexes and will allow a more effective design structure of new vanadium-based compounds in the future.


Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Membrane Potential, Mitochondrial/drug effects , Pancreatic Neoplasms/drug therapy , Vanadium/chemistry , Aminopyridines/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor , Humans , Ligands , Oxidative Stress/drug effects , Pancreas/cytology , Structure-Activity Relationship , Tetrazolium Salts/chemistry , Thiazoles/chemistry , Pancreatic Neoplasms
9.
Curr Neuropharmacol ; 19(8): 1323-1344, 2021.
Article En | MEDLINE | ID: mdl-33342413

The aim of this work is to review tacrine analogues from the last three years, which were not included in the latest review work, donepezil and galantamine hybrids from 2015 and rivastigmine derivatives from 2014. In this account, we summarize the efforts toward the development and characterization of non-toxic inhibitors of cholinesterases based on mentioned drugs with various interesting additional properties such as antioxidant, decreasing ß-amyloid plaque aggregation, nitric oxide production, pro-inflammatory cytokines release, monoamine oxidase-B activity, cytotoxicity and oxidative stress in vitro and in animal model that classify these hybrids as potential multifunctional therapeutic agents for Alzheimer's disease. Moreover, herein, we have described the cholinergic hypothesis, mechanisms of neurodegeneration and current pharmacotherapy of Alzheimer's disease based on the restoration of cholinergic function through blocking enzymes that break down acetylcholine.


Alzheimer Disease , Cholinesterase Inhibitors , Alzheimer Disease/drug therapy , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Donepezil , Galantamine , Rivastigmine , Tacrine
10.
Molecules ; 25(7)2020 Apr 10.
Article En | MEDLINE | ID: mdl-32290299

Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Vanadium Compounds/chemistry , Vanadium Compounds/pharmacology , Animals , Cell Cycle Checkpoints/drug effects , DNA Damage/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
11.
Med Chem ; 16(7): 947-957, 2020.
Article En | MEDLINE | ID: mdl-31309898

BACKGROUND: Alzheimer's disease (AD) is progressive and irreversible neurodegenerative disorder. Current pharmacotherapy is not able to stop progression of the disease and can only improve cognitive functions. Therefore, new drugs are being sought that will slow down the development of the disease. OBJECTIVE: Novel phosphorus and thiophosphorus tacrine derivatives 7-14 were designed, synthesized and their biological activity and molecular modeling was investigated as a new potential anti- Alzheimer's disease (AD) agents. METHODS: 9-Chlorotacrine was treated with propane-1,3-diamine in the presence of sodium iodide to yield N1-(1,2,3,4-tetrahydroacridin-9-yl)propane-1,3-diamine 6. Finally, it was treated with corresponding acid ester or thioester to give phosphorus or thiophosphorus tacrine derivative 7-14. All of the obtained final structures were characterized by 1H NMR, 13C NMR, 31P NMR and MS. RESULTS: The results of the docking studies showed that the newly designed phosphorus and thiophosphorus tacrine analogs, theoretically possess AChE and BChE-binding ability. Kinetic study showed that 8 and 12 in the series proved to be more potent electric eel AChE (eeAChE) and human (hAChE) inhibitors than tacrine, where 8 inhibited eeAChE three times more than the referenced drug. The highest BChE inhibition revealed 11 and 13. The most active compounds against eeAChE, hAChE and BChE showed mixed type of inhibition. CONCLUSION: All new synthesized compound exhibited lower toxicity against neuroblastoma.cell line (SH-SY5Y) in comparison with tacrine. Two analogues in the series, 7 and 9, demonstrated lack of cytotoxicity against hepatocellular cells (hepG2).


Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Tacrine/pharmacology , Alzheimer Disease/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Electrophorus , Humans , Phosphorylation , Tacrine/chemical synthesis , Tacrine/chemistry
12.
Oxid Med Cell Longev ; 2019: 6740325, 2019.
Article En | MEDLINE | ID: mdl-31827692

Implant-related infections are an emerging clinical and economic problem. Therefore, we decided to assess potential clinical usefulness and safety of silver orthophosphate microparticles (SOMPs) regarding their shape. We synthesized and then assessed antimicrobial properties and potential cytotoxicity of six shapes of SOMPs (tetrapod, cubes, spheres, tetrahedrons, branched, and rhombic dodecahedron). We found that SOMPs had a high antimicrobial effect; they were more efficient against fungi than bacteria. SOMPs exerted an antimicrobial effect in concentrations not toxic to mammalian cells: human fetal osteoblast (hFOB1.19), osteosarcoma (Saos-2), mouse preosteoblasts (MC3T3-E1), skin fibroblast (HDF), and mouse myoblast (C2C12). At higher concentration SOMPs, induced shape- and concentration-dependent cytotoxicity (according to MTT and BrdU assays). Tetrapod SOMPs had the smallest effect, whereas cubical SOMPs, the highest on cell viability. hFOB1.19 were the most resistant cells and C2C12, the most susceptible ones. We have proven that the induction of oxidative stress and inflammation is involved in the cytotoxic mechanism of SOMPs. After treatment with microparticles, we observed changes in levels of reactive oxygen species, first-line defense antioxidants-superoxide dismutase (SOD1, SOD3), and glutathione peroxidase (GPX4), metalloproteinase (MMP1, MMP3), and NF-κB protein. Neither cell cycle distribution nor ultrastructure was altered as determined by flow cytometry and transmission electron microscopy, respectively. In conclusion, silver orthophosphate may be a safe and effective antimicrobial agent on the implant surface. Spherical-shaped SOMPs are the most promising for biomedical application.


Anti-Bacterial Agents/administration & dosage , Antineoplastic Agents/administration & dosage , Bacteria/growth & development , Metal Nanoparticles/administration & dosage , Osteoblasts/cytology , Osteosarcoma/pathology , Phosphates/chemistry , Silver Compounds/chemistry , Animals , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Bacteria/drug effects , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Survival , Cells, Cultured , Humans , Metal Nanoparticles/chemistry , Mice , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
13.
Int J Mol Sci ; 20(2)2019 Jan 10.
Article En | MEDLINE | ID: mdl-30634697

Pancreatic cancer is characterized by one of the lowest five-year survival rates. In search for new treatments, some studies explored several metal complexes as potential anticancer drugs. Therefore, we investigated three newly synthesized oxidovanadium(IV) complexes with 2-methylnitrilotriacetate (bcma3-), N-(2-carbamoylethyl)iminodiacetate (ceida3-) and N-(phosphonomethyl)-iminodiacetate (pmida4-) ligands as potential anticancer compounds using pancreatic cancer cell lines. We measured: Cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR) and lactate dehydrogenase (LDH) assay; antiproliferative activity by bromodeoxyuridine BrdU assay; reactive oxygen species (ROS) generation and cell cycle analysis by flow cytometry; protein level by Western blot and cellular morphology by confocal laser scanning microscopy. The results showed that these oxidovanadium(IV) complexes were cytotoxic on pancreatic cancer cells (PANC-1 and MIA PaCa2), but not on non-tumor human immortalized pancreas duct epithelial cells (hTERT-HPNE) over the concentration range of 10⁻25 µM, following 48 h incubation. Furthermore, molecular mechanisms of cytotoxicity of [4-NH2-2-Me(Q)H][VO(bcma)(H2O)]2H2O (T1) were dependent on antiproliterative activity, increased ROS generation, cell cycle arrest in G2/M phase with simultaneous triggering of the p53/p21 pathway, binucleation, and induction of autophagy. Our study indicates that oxidovanadium(IV) coordination complexes containing 2-methylnitrilotriacetate ligand are good candidates for preclinical development of novel anticancer drugs targeting pancreatic cancer.


Antineoplastic Agents/pharmacology , Autophagy/drug effects , Carcinoma, Pancreatic Ductal/metabolism , Cell Cycle Checkpoints/drug effects , Pancreatic Neoplasms/metabolism , Vanadium Compounds/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Molecular Structure , Reactive Oxygen Species/metabolism , Vanadium Compounds/chemistry , Pancreatic Neoplasms
14.
Curr Neuropharmacol ; 17(5): 472-490, 2019.
Article En | MEDLINE | ID: mdl-29651948

Tacrine is a potent inhibitor of cholinesterases (acetylcholinesterase and butyrylcholinesterase) that shows limiting clinical application by liver toxicity. In spite of this, analogues of tacrine are considered as a model inhibitor of cholinesterases in the therapy of Alzheimer's disease. The interest in these compounds is mainly related to a high variety of their structure and biological properties. In the present review, we have described the role of cholinergic transmission and treatment strategies in Alzheimer's disease as well as the synthesis and biological activity of several recently developed classes of multifunctional tacrine analogues and hybrids, which consist of a new paradigm to treat Alzheimer's disease. We have also reported potential of these analogues in the treatment of Alzheimer's diseases in various experimental systems.


Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Tacrine/analogs & derivatives , Acetylcholinesterase/metabolism , Alzheimer Disease/enzymology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Butyrylcholinesterase/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/therapeutic use , Humans , Tacrine/pharmacology , Tacrine/therapeutic use
15.
Med Pr ; 69(6): 651-661, 2018 12 18.
Article Pl | MEDLINE | ID: mdl-30547951

BACKGROUND: The research involved the evaluation of physical and mechanical properties of hydroxyapatite (HAp) bio-ceramics sprayed on titanium substrate of the type Ti-grade 2 (CP-Ti) by means of the plasma method. An innovative method of coating is applied when using implantology for healing bone defects in the body. MATERIAL AND METHODS: Hydroxyapatite coating was prepared in order to conduct research. The powder was made using wet-chemical technology consisting in separating the solids from the solution. Next, a titanium substrate was prepared, onto which hydroxyapatite was applied with a plasma technique. RESULTS: As a result of the research it has to be noted that the properties of the obtained coating may be used for covering large surfaces of implants of any shape. CONCLUSIONS: During the research into the physical and mechanical properties of hydroxyapatite composites it has been observed that they show sufficient mechanical properties to be used in implantology. The further aim of the research will involve selecting technological parameters of spray coating in order to increase adhesion and cohesion of HAp coatings. Med Pr 2018;69(6):651-661.


Biocompatible Materials/chemistry , Durapatite/chemistry , Prosthesis Design , Absorbable Implants , Humans , Surface Properties , Titanium/chemistry
16.
Oncotarget ; 8(36): 60324-60341, 2017 Sep 01.
Article En | MEDLINE | ID: mdl-28947974

The pancreatic cancer is the fourth leading cause of cancer-related death and characterized by one of the lowest five-year survival rate. The current therapeutic options are demonstrating minimal effectiveness, therefore studies on new potential anticancer compounds, with non-significant side effects are highly desirable. Recently, it was demonstrated that vanadium compounds, in particular organic derivatives, exhibit anticancer properties against different type of tumor as well as favorable biodistribution from a pancreatic cancer treatment perspective. In this research, we showed selective cytotoxic effect of vanadium complexes, containing phenanthroline and quinoline as an organic ligands, against human pancreatic ductal adenocarcinoma cell line (PANC-1), compared to non-tumor human immortalized pancreas duct epithelial cells (hTERT-HPNE). Results exhibited that vanadium complexes inhibited autophagy process in selective cytotoxic concentration as well as caused the cell cycle arrest in G2/M phase associated with mitotic catastrophe and increased level of reactive oxygen species (ROS). Moreover, in higher concentration, vanadium derivatives induced a mix type of cell death in PANC-1 cells, including apoptotic and necroptotic process. Our investigation emphasizes the anticancer potential of vanadium complexes by indicating their selective cytotoxic activity, through different process posed by alternative type of cell deaths to apoptosis-resistant cancer cells. Further studies supporting the therapeutic potential of vanadium in pancreatic cancer treatment is highly recommended.

...